Skip to content

Numpy

Numpy#

The core tool for performant numerical computing with Python

Numpy arrays#

  • multi-dimensional arrays
  • closed to hardware - faster
  • designed for scientific computation
    import numpy as np
    ar = np.array([1,2,3,4])
    ar
    array([0, 1, 2, 3])
    

Testing the speed difference#

We will use ipthyons %timeit

Normal python array

    In [12]: L = range(1000)

    In [13]: %timeit [i**2 for i in L]
    414 µs ± 8.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Numpy array

In numpy mathematical operations are automatically operated on each element of array

    In [14]: L = np.arange(1000)

    In [16]: %timeit L**2
    1.57 µs ± 71.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Getting help#

Numpy Docs

np.array?

In [3]: np.lookfor('create array')
Search results for 'create array'
---------------------------------
numpy.array
    Create an array.
numpy.memmap
    Create a memory-map to an array stored in a *binary* file on disk.

Import convention#

When importing numpy use

import numpy as np

Creating Arrays#

1D#

Creating

    >>> a = np.array([0,1,2,3])
    >>> a
    array([0, 1, 2, 3])

Checking number of dimensions

    >>> a.ndim
    1

Checking number of deimensions

    >>> a.shape
    (4,)
    >>> len(a)
    4

2D#

Create it with an array/list oflists

    >>> b = np.array([[1,2,3,4], [5,6,7,8]])
    >>> b
    array([[1, 2, 3, 4],
        [5, 6, 7, 8]])

Checking number of dimensions

    >>> b.ndim
    2

Return a tuple of the shapeof an array

    >>> b.shape
    (2, 4)

Check number of objects in first dinmesion

    >>> len(b)
    2

Evenly spaced#

Use np.arange(x)

arange([start,] stop[, step,], dtype=None)

>>> a = np.arange(100000)
>>> a
array([    0,     1,     2, ..., 99997, 99998, 99999])

Number of points within a range#

linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

a = np.linspace(0, 1, 100)
array([ 0.        ,  0.01010101,  0.02020202,  0.03030303,  0.04040404, ...

Common arrays#

np.ones

ones(shape, dtype=None, order='C')
Return a new array of given shape and type, filled with ones.

np.zeros

zeros(shape, dtype=float, order='C')
Return a new array of given shape and type, filled with zeros.

np.eye

eye(N, M=None, k=0, dtype=<class 'float'>)
Return a 2-D array with ones on the diagonal and zeros elsewhere.

np.diag

diag(v, k=0)
Extract a diagonal or construct a diagonal array.

>>> d = np.diag(np.array([1, 2, 3, 4]))
    >>> d
    array([[1, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 3, 0],
           [0, 0, 0, 4]])

np.random

    >>> a = np.random.rand(4)
    >>> a
    array([ 0.14365585,  0.96317038,  0.57808752,  0.30486506])

Gaussian random numbers

Numbers on a “standard normal” distribution of mean 0 and variance 1

    >>> a = np.random.randn(4)
    >>> a
    array([-0.72186413,  1.89644724, -1.63709681, -0.76200216])

Basic data types#

Numbers sometimes displayed with a trailing .: 2.

>>> a = np.array([1.,2.,3.,])
>>> a
array([ 1.,  2.,  3.])
>>> a.dtype
dtype('float64')

No . is int64 with a dot is float64

You can explicitly specify the datatype with:

c = np.array([1, 2, 3], dtype=float)

There is also:

complex128:

d = np.array([1+2j, 3+4j, 5+6*1j])

String:

>>> a = np.array(['hello','is','it','me','you','are','looking','for'])
>>> a.dtype
dtype('<U7')

Indexing and Slicing#

You access items the same as python lists

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0], a[2], a[9]
(0, 2, 9)

Reversing a numpy array

>>> a[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

For multi-dimensional arrays indexes are tuples of intergers The Row is specified first and column second

>>> a[2,1]
# third row, second column

Arrays can be sliced (Just like python)

>>> a[12:20:2] # [start:end:step]
array([22, 24, 26, 28])

No slice components are requered, default is 0:last:1

>>> a[:]

**Remember that the end/last element is not included

>>> a = np.array([1,2,3,4])
>>> a[1:3]
array([2, 3])
>>> a[1:4]
array([2, 3, 4])

Now the differences is you can assign slices to numpy arrays but not python lists

>>> a[2:] = 10
>>> a
array([ 1,  2, 10, 10])

Slicing a 2-d array:

a[, ]

Example:

>>> a = np.diag(np.arange(1,7, dtype='float'))
>>> a
array([[ 1.,  0.,  0.,  0.,  0.,  0.],
        [ 0.,  2.,  0.,  0.,  0.,  0.],
        [ 0.,  0.,  3.,  0.,  0.,  0.],
        [ 0.,  0.,  0.,  4.,  0.,  0.],
        [ 0.,  0.,  0.,  0.,  5.,  0.],
        [ 0.,  0.,  0.,  0.,  0.,  6.]])

And you want the entire rows of 3 to 5 diagonally:

  • y: starting at 2 ending at 4 inclusive (5) = 2:5
  • x: starting at 0 and ending at index 4 inclusive (5) = 0:5

It is wierd as you start with the y-axis in the notation

    >>> a[2:5,:5]
    array([[ 0.,  0.,  3.,  0.,  0.],
           [ 0.,  0.,  0.,  4.,  0.],
           [ 0.,  0.,  0.,  0.,  5.]])

Copies and Views#

The slicing operation creates a view on the original array which is just a way of accessing array data. The original array is not copied.

You can use np.may_share_memory(x, y) to check if 2 arrays share memory

If memory is shared changing the copied or original affect the other.

To force a copy use:

>>> c = a[:2].copy()

Fancy Indexing#

Using boolean masks

>>> a = np.random.randint(0, 21, 15)
>>> a
array([10,  3,  8,  0, 19, 10, 11,  9, 10,  6,  0, 20, 12,  7, 14])
>>> (a % 3 == 0)
array([False,  True, False,  True, False, False, False,  True, False,
        True,  True, False,  True, False, False], dtype=bool)
>>> mask = (a % 3 == 0)
>>> extract_from_a = a[mask]
>>> extract_from_a
array([ 3,  0,  9,  6,  0, 12])

Assigning new values to sub array that meets a criterion:

a[a % 3 == 0] = -1

Using integer array mask (repeating some values):

>>> a = np.arange(0, 100, 10)
>>> a
array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])
>>> a[[1,2,2,3,3,4,4]]
array([10, 20, 20, 30, 30, 40, 40])

Can be used to assign as well:

>>> a[[7,9]] = 100

A new array created by an array of arrays will share the same shape

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> idx = np.array([[3,4],[9,7]])
>>> idx
array([[3, 4],
    [9, 7]])
>>> a[idx]
array([[3, 4],
    [9, 7]])

**Remember for an element a[5,6] the x-axis is 6 and the y-axis is 5

Indexing#

An iteratable can be used tuple works the same as a list:

full[[0,1,2,3,4], [1,2,3,4,5]]
full[(0,1,2,3,4), (1,2,3,4,5)]

You can use standard list manipulation notation:

full[(3:, [0,2,5]]

Numerical operations on arrays#

With Scalars#

scalars are single element or number fields

You can simply apply the arithmetic to the whole array

>>> a = np.array([1, 2, 3, 4])
>>> a + 1
array([2, 3, 4, 5])

Lets try a to the power of 2

>>> a**2
array([ 1,  4,  9, 16])

All arithmetic operates element-wise

>>> b = np.ones(4) + 1
>>> b
array([ 2.,  2.,  2.,  2.])
>>> a - b
array([-1.,  0.,  1.,  2.])

Another example:

>>> j = np.arange(5)
>>> j
array([0, 1, 2, 3, 4])
>>> 2**(j + 1) - j
array([ 2,  3,  6, 13, 28])

The operations are much faster than if you did them in pure python

Matrix Multiplcation#

In [6]: c = np.ones((3, 3))

In [7]: c Out[7]: array([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]])

Using * is not matrix multiplication

In [8]: c * c Out[8]: array([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]])

Using the dot function is matrix multiplciation

dot is the product of 2 arrays

In [9]: c.dot(c) Out[9]: array([[ 3., 3., 3.], [ 3., 3., 3.], [ 3., 3., 3.]])

Comparison is also element-wise#

    In [20]: a = np.array([1, 2, 3, 4])

    In [21]: b = np.array([4, 2, 2, 4])

    In [22]: a == b
    Out[22]: array([False,  True, False,  True], dtype=bool)

    In [23]: a > b
    Out[23]: array([False, False,  True, False], dtype=bool)

If you want to compare the entire array use np.array_equal():

    a = np.array([1, 2, 3, 4])
    b = np.array([1, 2, 3, 4])
    np.array_equal(a, b)

Logic operations#

Use np.logical_or() and np.logical_and()

>>> a = np.array([1, 1, 0, 0], dtype=bool)
>>> b = np.array([0, 1, 1, 0], dtype=bool)
>>> np.logical_or(a, b)
array([ True,  True,  True, False], dtype=bool)
>>> np.logical_and(a, b)
array([False,  True, False, False], dtype=bool)

Transcendental operations#

Use np.sin, np.cos, np.tan, np.log and np.exp

    >>> a = np.array([-1, 0, 1, 2])
    >>> a
    array([-1,  0,  1,  2])
    >>> np.sin(a)
    array([-0.84147098,  0.        ,  0.84147098,  0.90929743])
    >>> np.log(a)
    __main__:1: RuntimeWarning: divide by zero encountered in log
    __main__:1: RuntimeWarning: invalid value encountered in log
    array([        nan,        -inf,  0.        ,  0.69314718])
    >>> np.exp(a)
    array([ 0.36787944,  1.        ,  2.71828183,  7.3890561 ])

Mimatch#

>>> a = np.arange(4)
>>> a + np.array([1, 2])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (4,) (2,)

When the shapes of the arrays do not match they cannot be broadcast

Transpose#

Invert and reflect. Opposite on both axis.

Create a triangle with np.triu (Use help(np.triu))

>>> np.triu(np.ones((3,3)),1)
array([[ 0.,  1.,  1.],
    [ 0.,  0.,  1.],
    [ 0.,  0.,  0.]])

then transpose with:

>>> a.T
array([[ 0.,  0.,  0.],
    [ 1.,  0.,  0.],
    [ 1.,  1.,  0.]])

Remember a transposition is a view, so when arrays become larger they will fail in unpredicatable ways

Extras#

  • np.allclose - Returns True if two arrays are element-wise equal within a tolerance.
  • np.tril- Lower triangle of an array.

Basic Reductions#

Finding the sum of an array#

>>> a
array([ 0,  5, 10, 15, 20, 25])
>>> a.sum()
75
>>> np.sum(a)
75

On the axis:

>>> a = np.array([[1,1], [2,2]])
>>> a
array([[1, 1],
    [2, 2]])

Find sum of the column along the y-axis - first dimension

>>> a.sum(axis=0)
array([3, 3])

Find the sum of column along the x-axis - second dimension:

>>> a.sum(axis=1)
array([2, 4])

Same idea at higher dimensions:

>>> x = np.random.rand(2, 2, 2)
>>> x
array([[[ 0.73091254,  0.3126328 ],
        [ 0.52196148,  0.51212003]],

    [[ 0.07157999,  0.15920737],
        [ 0.75733851,  0.99707551]]])
>>> x.sum(axis=2)[0, 1]
1.0340815143357149

min, max and index of min and max

x = np.array([1, 3, 2])
>>> x.min()
1
>>> x.max()
3

Get the index of the min or max:

>>> x.argmin()
0
>>> x.argmax()
1

Logic operations#

>>> np.all([True, True, False])
False
>>> np.any([True, True, False])
True

Can be used with an argument:

>>> a = np.array([1, 2, 3, 2])
>>> b = np.array([2, 2, 3, 2])
>>> np.all(a < 4)
True
>>> np.any(a > 4)
False
>>> np.any(a > 3)
False
>>> np.any(a > 2)
True

With multiple conditions:

>>> a = np.array([1, 2, 3, 2])
>>> b = np.array([2, 2, 3, 2])
>>> c = np.array([6, 4, 4, 5])
>>> ((a <= b) & (b <= c))
array([ True,  True,  True,  True], dtype=bool)
>>> ((a <= b) & (b <= c)).all()
True

Statistics#

y = np.array([[1, 2, 3], [5, 6, 1]])

The average or mean:

>>> y.mean()
3.0

The median along the -1 last axis

>>> np.median(y, axis=-1)
array([ 2.,  5.])

The standard devication

>>> x.std()
0.81649658092772603

cumsum is the cumulative sum

>>> y.cumsum(axis=0)
array([[1, 2, 3],
    [6, 8, 4]])
>>> y.cumsum(axis=1)
array([[ 1,  3,  6],
    [ 5, 11, 12]])
>>> y
array([[1, 2, 3],
    [5, 6, 1]])

Remember in ipython you can run bash commands with ! in front

Eg. !cat data/populations.txt